a2 United States Patent

Chamberlain et al.

US009141453B2

US 9,141,453 B2
Sep. 22, 2015

(10) Patent No.:
(45) Date of Patent:

(54) REDUCED FOOTPRINT CORE FILES IN

STORAGE CONSTRAINED ENVIRONMENTS
(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)
(72) Richard N. Chamberlain, Winchester
(GB); Blazej Czapp, London (GB);
Howard Hellyer, Winchester (GB);
Matthew F. Peters, Winchester (GB);
Adam J. Pilkington, Winchester (GB)

Inventors:

(73) International Business Machines

Corporation, Armonk, NY (US)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 147 days.

@
(22)

Appl. No.: 13/709,441

Filed: Dec. 10, 2012

(65) Prior Publication Data

US 2013/0166968 Al Jun. 27, 2013

(30) Foreign Application Priority Data

Dec. 21,2011 (GB) .oeooviiiiiciiccieee 1121990.4

(51) Int.CL
GOGF 11/00
GOGF 11/07
USS. CL
CPC ... GOGF 11/006 (2013.01); GOGF 11/0778
(2013.01)

(2006.01)
(2006.01)
(52)

(58) Field of Classification Search
CPC .ot GOG6F 11/0706

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,293,612 A 3/1994 Shingai

6,681,348 Bl 1/2004 Vachon

6,738,928 Bl 5/2004 Brown

7,028,056 Bl 4/2006 Hendel et al.

7,178,068 B2 2/2007 Maison et al.

7496,794 B1* 2/2009 Easthametal. 714/37
2005/0228960 Al 10/2005 Francis et al.
2008/0126879 Al 5/2008 Tiwari et al.
2008/0294839 Al 11/2008 Bell et al.
2009/0216967 Al 8/2009 Sugawara
2011/0231710 A1l™* 9/2011 Laorcccevenene 714/38.11
2014/0075244 Al* 3/2014 Takahashi 714/38.1

FOREIGN PATENT DOCUMENTS

EP 1215578 A2 6/2002
OTHER PUBLICATIONS

UK International Search Report for Application No. GB1121990 4,
International Filing Date Apr. 10, 2012; pp. 1-3.

Y. Huang et al., “Optimizing Crash Dump in virtualized Environ-
ments.” VEE Mar. 17-19, 2010, pp. 1-12.

* cited by examiner

Primary Examiner — Christopher McCarthy
(74) Attorney, Agemt, or Firm — Cantor Colburn LLP;
Dermotte Cooke

(57) ABSTRACT

A method for creating diagnostic files that includes receiving
an error notification indicating that an error has occurred in a
particular system section of a system that has a plurality of
system sections. The error notification includes information
about the error. A diagnostic file that includes a summarized
error report of the particular system section is created based
on the information included in the error notification. The
diagnostic file is saved.

20 Claims, 11 Drawing Sheets

Program Utility 40 Utility Program 42A
Utility Component 48A Somponent | | asiet 50C
Raslet 50A [o—— Raslet 508 ?gglet Method
Method 500 Rasiot
Method
[Utiity Component 48 B | 500 Program 428
Triage Component 44 Generic Raslet 51 Error Buffer
| Triage Method 400] Raslet Method 500 52
Diagnostic File 46

US 9,141,453 B2

Sheet 1 of 11

Sep. 22, 2015

U.S. Patent

| @1nbi4
| uy Joud ¥} (s)eolre(
4]) vz Aejdsig [eusaxg
/\J 1 4
9% 9lid 810D
v
G auibug aion ¢c SedeuRul O]
- Aﬁ
2 sweiboid g [Z€ IHOVD I 8l
oy Aunn welBoid _..v 0S NV 91 3un Buissesoid
7€ welsAg abelin)g
0Z J81depy iomieN
O gz Kiowspy

2L 1on1eg / weisAg teindwon

US 9,141,453 B2

Sheet 2 of 11

Sep. 22, 2015

U.S. Patent

Wy Joud

Z 3Inbi4

N¥G

US 9,141,453 B2

Sheet 3 of 11

Sep. 22, 2015

U.S. Patent

¢ ainbi4

9t 9|14 osoubelq

¢S

00G POYIBA 19]sey

00 pouylep abeu |

Jayng Joig

LG 19|Sey olBue9)

1 Juauodwo)) abeu |

gz weiboud

009G
poyleai J8isey

00S

g 81 Jusuodwod) AN

poyIBN

Jo|sey

d06 1eIsey

00S PoYylen
19isey

006 19Isey

Vi weiboid

V0G 19Isey

a8y
Jusuodwo)

V81 Jusuodwo)) AN

Auinn

or Aunn weubold

US 9,141,453 B2

Sheet 4 of 11

Sep. 22, 2015

U.S. Patent

¥ ainbi4

puz ¢y

uolewojul 10413 Jayuny (|e pue [eubis Buipnjou syl onsoubelip eAeS QL

+

-

SUOoI09g Jayun4 wovvl

SUOI08S JBYHINY SUILWISISP ‘UCIIBLLIOUI JOLIS 181N} BAIS98Y 90

&

uonewIojul Jsyuny Joy suibus Joue uonoas Jsenbsy yob [«

B

UOIJO8S YIM PaJBIOOSSE UOIIEOIIIOU JOLIS SAI909Y Z0Y

F:

00F poylely abeu|

US 9,141,453 B2

Sheet 5 of 11

Sep. 22, 2015

U.S. Patent

G ainbi4

pu3z ¢cls

auibus ebeu) 0} UOHBWIOJUI JOLID YOB] PUSS LS

A

UOJJEWIOU| JOLS POZIBLWILINS IO [N} SUILLISIB(80S

UOIJeo 10U JOLIS IO} IX8JU09 uooes Alusp| 90S

h

UONEDINIOU JOLIS 0} JUBASISI JI UOIJOSS PaJeID0SSE Isylo AJjuspl 05

uogesijijou Jolis wody adAy Joue Apusp| Zos

N

00G POUISIN 19iseY

US 9,141,453 B2

Sheet 6 of 11

Sep. 22, 2015

U.S. Patent

g ainbi4
Hy loud
abeuwl
painuaj fsasinN Aiesinp
desH deap desyy WA i 09

(soweyoaw dwnp buysixa) ucoo 1Ir ul ysein

US 9,141,453 B2

Sheet 7 of 11

Sep. 22, 2015

U.S. Patent

/ ainbi4
painua] desH | AssinN deey | AsesinN desH WA ur 99
w2 A 1/ k] ¥ N
7 Jusuodwo?) abeu |

10119 810jaq 91Ee]S |eniu|

US 9,141,453 B2

Sheet 8 of 11

Sep. 22, 2015

U.S. Patent

g ainbi4

O ommE_ U

3|4 o;mocmm_n_

painuaj
deayH

AtasinN
desH

AU abeuw|
+

AssinN
desanH NA

09

i

Jusuodwon) sbeu |

9pP02 || ul sindd0 JoLis Iaye aje}s Jou

US 9,141,453 B2

Sheet 9 of 11

Sep. 22, 2015

U.S. Patent

6 ainbi4
) abew : :
- faewuwng mu k u o|l< onsoubelq
\u abeuw|
.
painus AissinN INESYTN
desH deeH desy WA e 09

@\@

Jusuodwon) ebeu

uoneuwlopul Atewwns 1o abew Jjous Buiaes sjels sbel |

US 9,141,453 B2

Sheet 10 of 11

Sep. 22, 2015

U.S. Patent

0l ainbi

Emu mmmE_bw Alewwing

paJnus |
deaH

AlasinN
desy

fssinN
desH

WA

U abeuw| |
¥

ir

suodwo) abeu |

uonewloul Alewwns Jo ebew Jous Buiaes ejels abew Jsyung

US 9,141,453 B2

Sheet 11 of 11

Sep. 22, 2015

U.S. Patent

|| @inbi4

omuung E EEO B8 D) [Couiung

Q abeuw|

¥

peinuaj KiosinN A1esinp
desH desy deay INA iir 09
b@
oL \g8 |® ?r
)

i

wesuodwo) sbeu |

uoljewloul Alewwns Jo abewt Jjoue buiaes a)e)s abeu Joyun4

US 9,141,453 B2

1
REDUCED FOOTPRINT CORE FILES IN
STORAGE CONSTRAINED ENVIRONMENTS

PRIORITY

This application claims priority to Great Britain Patent
Application No. 11219904, filed 21 Dec. 2011, and all the
benefits accruing therefrom under 35 U.S.C. §119, the con-
tents of which in its entirety are herein incorporated by ref-
erence.

BACKGROUND

The present invention relates generally to computers, and
more specifically, to reducing the footprint of core files in
storage constrained environments.

A core file is a file that contains a memory image of a
process. Many operating systems have the capability of sav-
ing a core file when an application abends. The core file is an
important part of diagnosing a cause of the abend, since the
data which the application was accessing at the time is in the
core file, along with information about which part of the
application was running at the time of the abend.

In environments where process memory space usage
exceeds the amount of storage space or transmission band-
width, storing a complete image of the memory is not prac-
tical. Examples of these environments include 64 bit pro-
cesses using terabytes (TBs) of data in random access
memory (RAM), mobile devices, embedded devices, and
large cache based systems. Mobile and embedded devices
connect to servers over a network, and when an error occurs
the device needs to get the core information and hence the
core files to the server quickly in case the error degrades or
eliminates the network connection. Large cache based sys-
tems include mobile networks where large amounts of data
are cached at the network edge, but there is little storage
available and a limited amount of bandwidth. One approach is
to compress the resultant core file and this can save some
space but may be costly in terms of processing time. Another
solution is to omit areas of the address space, but this has the
downside of possibly leaving out memory that is needed.

SUMMARY

An embodiment is a method for creating diagnostic files
that includes receiving an error notification indicating that an
error has occurred in a particular system section of a system
that has a plurality of system sections. The error notification
includes information about the error. A diagnostic file that
includes a summarized error report of the particular system
section is created based on the information included in the
error notification. The diagnostic file is saved.

Another embodiment is a system for creating diagnostic
files that includes a plurality of system sections, an error
buffer, and an error engine. The error buffer is configured to
receive an error notification indicating that an error has
occurred in a particular system section of the plurality of
system sections. The error notification includes information
about the error. The error engine is configured to create a
diagnostic file that includes a summarized error report of the
particular system section and to save the diagnostic file. The
diagnostic file is created based on the information included in
the error notification.

A further embodiment is a computer program product for
creating diagnostic files. The computer program product
includes a computer readable storage medium having pro-
gram code embodied therewith. The program code is execut-

10

15

20

25

30

35

40

45

50

55

60

65

2

able by a processor to receive an error notification indicating
that an error has occurred in a particular system section of a
system having a plurality of system sections. The error noti-
fication includes information about the error. The program
code is also executable by the processor to create a diagnostic
file that includes a summarized error report of the particular
system section and to save the diagnostic file. The diagnostic
file is created based on the information included in the error
notification.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

Embodiments of the invention will now be described, by
means of example only, with reference to the accompanying
drawings in which:

FIG. 1 is a deployment diagram of a computing system
showing a core file of the prior art; and

FIG. 2 is a network diagram illustrating computing nodes
in a prior art cloud environment 50 where a core file could be
acquired;

FIG. 3 is component diagram of a program utility in accor-
dance with an embodiment;

FIG. 4 is process diagram showing process logic steps of a
triage method in accordance with an embodiment;

FIG. 5 is a process diagram showing process logic steps of
a “raslet” method in accordance with an embodiment;

FIG. 6 is an example diagram showing the core file of the
whole system image produced by the prior art; and

FIGS. 7 to 11 depict state diagrams showing a core file
being built by the exemplary embodiments.

DETAILED DESCRIPTION

Referring to FIG. 1, a deployment diagram of a computing
system showing a core file engine of the prior art is described.
Computer system node 10 comprises a computer system/
server 12, which is operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with computer systeny/server 12 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, hand-held or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network personal computers (PCs), minicomputer systems,
mainframe computer systems, and distributed cloud comput-
ing environments that include any of the above systems or
devices, and the like.

Computer system/server 12 may be described in the gen-
eral context of computer system-executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 12 may be
embodied in distributed cloud computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted cloud computing environment, program modules may be
located in both local and remote computer system storage
media including memory storage devices.

As shown in FIG. 1, computer systeny/server 12 in com-
puter system node 10 is shown in the form of a general-
purpose computing device. The components of computer sys-
teny/server 12 may include, but are not limited to, one or more

US 9,141,453 B2

3

processors or processing units 16, a system memory 28, and
a bus 18 that couples various system components including
system memory 28 to processor 16.

Bus 18 represents one or more of any of several types of bus
structures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures may
include an Industry Standard Architecture (ISA) bus, a Micro
Channel Architecture (MCA) bus, an Enhanced ISA (EISA)
bus, a Video Electronics Standards Association (VESA) local
bus, and a Peripheral Component Interconnects (PCI) bus.

Computer system/server 12 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by computer system/server
12, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 28 can include computer system readable
media in the form of volatile memory, such as random access
memory (RAM) 30 and/or cache memory 32. Computer sys-
teny/server 12 may further include other removable/non-re-
movable, volatile/non-volatile computer system storage
media. By way of example only, storage system 34 can be
provided for reading from and writing to a non-removable,
non-volatile magnetic media (not shown and typically called
a“hard drive”). Although not shown, a magnetic disk drive for
reading from and writing to a removable, non-volatile mag-
netic disk (e.g., a “floppy disk™), and an optical disk drive for
reading from or writing to a removable, non-volatile optical
disk such as a CD-ROM, DVD-ROM or other optical media
can be provided. In such instances, each can be connected to
bus 18 by one or more data media interfaces. As will be
further depicted and described below, memory 28 may
include at least one program product having a set (for
example, at least one) of program modules that are configured
to carry out the functions of embodiments of the invention.

Program/utility 40, having a set of programs 42 and a core
file engine 45 of the prior art, may be stored in memory 28 by
way of example, and not limitation, as well as an operating
system, one or more application programs, other program
modules, and program data. Each of the operating system,
one or more application programs, other program modules,
and program data or some combination thereof, may include
an implementation of a networking environment. Programs
42 generally carry out the functions and/or methodologies of
embodiments of the invention as described herein. Core file
engine 45 controls the saving of core file 46 in memory.

Computer system/server 12 may also communicate with
one or more external devices 14 such as akeyboard, a pointing
device, a display 24, etc.; one or more devices that enable a
user to interact with computer system/server 12; and/or any
devices (e.g., network card, modem, etc.) that enable com-
puter systeny/server 12 to communicate with one or more
other computing devices. Such communication can occur via
1/0 interfaces 22. Still yet, computer system/server 12 can
communicate with one or more networks such as a local area
network (LAN), a general wide area network (WAN), and/or
a public network (e.g., the Internet) via network adapter 20.
As depicted, network adapter 20 communicates with the other
components of computer system/server 12 via bus 18. It
should be understood that although not shown, other hard-
ware and/or software components could be used in conjunc-
tion with computer system/server 12. Examples, include, but
are not limited to: microcode, device drivers, redundant pro-
cessing units, external disk drive arrays, RAID systems, tape
drives, and data archival storage systems.

10

15

20

25

30

35

40

45

50

55

60

65

4

Referring to FIG. 2, illustrative computing nodes in cloud
environment 50 are described. A core file engine could be
used in any of these nodes for saving a core file. As shown,
cloud computing environment 50 comprises one or more
cloud computing nodes 10 with which local computing
devices used by cloud consumers, such as, for example, per-
sonal digital assistant (PDA) or cellular telephone 54 A, desk-
top computer 54B, laptop computer 54C, and/or automobile
computer system 54N may communicate. Nodes 10 may
communicate with one another. They may be grouped (not
shown) physically or virtually, in one or more networks, such
as private, community, public, or hybrid clouds, or a combi-
nation thereof. This allows cloud computing environment 50
to offer infrastructure, platforms and/or software as services
for which a cloud consumer does not need to maintain
resources on a local computing device. It is understood that
the types of computing devices 54A-N shown in FIG. 2 are
intended to be illustrative only and that computing nodes 10
and cloud computing environment 50 can communicate with
any type of computerized device over any type of network
and/or network addressable connection (for example using a
web browser).

Referring to FIG. 3, a component diagram of program
utility 40 in accordance with an embodiment is shown. Pro-
gram utility 40 represents an operating system or virtual
machine system that can be divided into small parts. In the
present example the program utility is a Java Virtual Machine
(JVM). Program utility 40 comprises: programs 42A to 42B;
triage component 44; diagnostic file 46; and utility compo-
nents 48A to 48C.

Programs 42 A to 42B represent application level program
code that normally provides for output and input at a user
level. This example shows programs 42A to 42B but one or
any number of programs can be part of the program utility.

Triage component 44 is for creating a core file 46 for
recording a failure within a plurality of system sections. Tri-
age component 44 comprises triage method 400 and error
buffer 52. Triage component 44 is for determining whether a
full or summarized error report is created for one or more
sections (also referred to herein as “system sections”) of the
system. Triage component 44 is also for compiling a compre-
hensive full image file or summarized error report from one of
more separate error reports using information included by the
error signal. Triage component 44 is also for saving a diag-
nostic file including the compiled full or summarized error
report. Triage component 44 is also for determining which
raslets are to be requested to create error reports and for
including in the diagnostic file depending on information
included in an error notification. As used herein, the term
“raslet” refers to a self-contained error engine, and the terms
“raslet” and “self-contained error engine” are used inter-
changeably herein. A raslet provides capabilities for produc-
tion of diagnostic output. Each raslet includes pre-allocated
working memory, stack and algorithms for providing the
diagnostic output. Triage component 44 controls communi-
cation between raslets 48A to 48C. Triage method 400 is
described in more detail below with reference to FIG. 4. Error
buffer 52 is for receiving an error signal indicating that an
error has occurred in a particular section of the plurality of
systems sections.

Diagnostic file 46 stores the output data in an embodiment.

Utility components 48A to 48C are the functional compo-
nents of program utility 40. This example shows three pro-
grams but one or more could be part of program utility 40.

Raslets (50A, 50B, 50C) are part of program 42A, utility
component 48A and utility component 48C in an embodi-
ment. In embodiments, raslets may operate as master or slave

US 9,141,453 B2

5

devices. Each raslet 50A-50C is specifically associated with
one or more system sections for performing a specialized
determination as to whether a full or summarized error report
is created for the respective one or more sections. Three
raslets are shown in FIG. 3 but other embodiments could have
fewer or more.

A raslet is responsible for individual system sections
including pre-allocated working memory, stack and algo-
rithms. In an embodiment, a raslet is partitioned into separate
functional areas, each of which has a piece of code that
provides capabilities for production of diagnostic output. In a
raslet embodiment, the triage component responds to an error
event for which diagnostics are required (triggered for
example by a signal handler). The raslet or triage component
is for determining the level of diagnostic output required from
each component. Raslets can be invoked serially or sequen-
tially. If an individual raslet fails, the triage component
detects this and falls back to produce a simple memory dump
of the failing component.

Program utility 40 is conceptually divided into system
sections, where each section is a utility component or an
individual program or program component. In an embodi-
ment, the program utility 40 is a JVM and the utility compo-
nents are, for example: garbage collection (GC); just-in-time
compiler (JIT); virtual machine (VM); heap nurseries; and a
tenured heap. The program components would be Java pro-
grams and/or a Java library. In other embodiments, each sec-
tion in the system could be all components or all subsets of
system memory. In an embodiment, three sections (48A, 48C
and 48C) have a dedicated raslet associated with the respec-
tive section to determine whether a full or summarized error
report is created and for creating a full or summarized error
report of the particular section depending on information
included by the error signal. Sections that are not associated
with a dedicated error engine, that is sections 48B and 42B,
are associated with a generic error engine or triage compo-
nent 44 in an embodiment and the generic error engine (ge-
neric raslet 51) is for determining whether a full or summa-
rized error report is created for those sections.

Any one of the utility components or programs could gen-
erate an error notification. An error notification indicates that
an error has occurred in a particular section of the plurality of
systems sections. An error notification contains information
relating to the time the error occurred, the type of error that
occurred and the section associated with the error occurrence.

FIG. 4 is process diagram showing process logic steps of
triage method 400 in accordance with an embodiment. In an
exemplary embodiment, triage method 400 is performed by
triage component 44 and comprises logical process blocks
402 to 410.

Block 402 is for receiving an error notification indicating
that an error has occurred in a particular section of the plu-
rality of systems sections.

Block 404 is for determining if a raslet is associated with
the section and sending a request to the raslet for further
information. If no raslet is associated then the triage compo-
nent acting as a general raslet makes the determination about
full or summarized error information.

Block 406 is for receiving the further information and for
determining if it contains references to further sections and if
such further sections should be queried for information relat-
ing to the error signal.

Block 408 is for counting further sections to be queried and
determining when all sections have been considered. Such
determination is evaluated based on section references con-
tained in the further information received. For instance, the
further information may contain references to one, two or

20

25

35

40

45

50

55

60

65

6

more relevant sections that need to be queried. This step will
loop back around blocks 404 and 406 for all referenced sec-
tions.

Block 410 is for creating a full or summarized error report
of the particular section and further section and for saving a
core file including a full or summarized error report for all
relevant sections.

Block 412 is the end step and control is returned to the
system.

FIG. 5 is process diagram showing process logic steps of
raslet method 500 in accordance with an embodiment. In an
exemplary embodiment, raslet method 500 is performed by a
raslet (e.g., raslet 50A, raslet 50B, raslet 50C) and includes
process blocks 502 to 512.

Block 502 is for identifying an error type from an error
notification.

Block 504 is for identifying any other sections, raslets or
other entities known by this raslet and associated with the
error notification.

Block 506 is for identifying context and facts within the
section associated with the error notification.

Block 508 is for determining the available error informa-
tion and for determining, based on the section parameters,
whether a full image or summarized error information is
appropriate.

Block 510 is for sending the error information back to the
triage component.

Block 512 is the end of the process where control is
returned to the triage component.

Referring to FIG. 6, an example of division of an applica-
tion into components is shown. A typical prior art scenario
shows the entire address space image of the application
dumped into a core file after an error in the just-in-time (JIT)
code.

Referring now to FIGS. 7 to 11, states of building a diag-
nostic file according to an exemplary embodiment is gener-
ally shown.

FIG. 7 is a first state diagram showing the initial state of the
example before an error. The example comprises six system
sections of a JVM, each section containing a raslet and each
raslet communicating with the triage component. In the
example, the JVM comprises a GC section; a JIT section, a
VM section; two nursery heap sections and a tenured heap
section. No error has occurred as yet. Communication paths
from the triage component to the raslets are shown as dotted
lines.

FIG. 8 is a second state diagram after an error has occurred
in the JIT indicated by a star. The triage component is
informed (Arrow 1) of the error and requests (Arrow 2) the
raslet in the JIT to send back an error report. Since the error
occurred in the JIT, then the JIT raslet determines that a full
error report is needed and transfers a full report and requests
that a full image of the JIT be made. The triage component
directs saving of the image and this is indicated by the cylin-
der below the JIT box labelled “Image.”

FIG. 9 is a third state diagram showing the triage compo-
nent requesting (Arrow 3) a raslet in the VM for further error
information. The further information is subsequently sent
back (Arrow 4) to the triage component. The further infor-
mation indicates that only a summary of the VM section is
needed and this is indicated by the wave shaped box below the
VM box labelled “Summary.”

FIG. 10 is a fourth state diagram showing the triage com-
ponent requesting (Arrow 5) a raslet in the GC for further
error information. The further information is sent back (Ar-
row 6) to the triage component. The further information indi-

US 9,141,453 B2

7

cates that only a summary ofthe GC section is needed and this
is indicated by the wave shaped box below the GC labelled
“Summary.”

FIG. 11 is a fifth state diagram showing the triage compo-
nent requesting raslets in the heap nursery and tenured heap
sections (Arrows 7A,7B,7C) for further error information.
The further error information is sent back (Arrows 8A, 8B,
8C) to the triage component. The further information indi-
cates that only a summary of these sections is needed and this
is indicated by the wave shaped boxes labeled “Summary”
below the heap nursery boxes.

The diagnostic file of this example is therefore built up
from a mixture of information components labeled by image
and summary.

An embodiment provides a method for creating a diagnos-
tic file for a failure within a system having a plurality of
system sections. The method includes: receiving an error
notification indicating that an error has occurred in a particu-
lar system section; creating a diagnostic file comprising a full
image of the particular system section or a summarized error
report of the particular system section depending on informa-
tion included by the error notification; and saving the diag-
nostic file including the full image or summarized error
report.

Embodiments divide up the address space into a series of
system sections, with each section containing a separate
dump component with its own pre-allocated working
memory, stack and algorithms. When an event occurs that will
result in a diagnostic file, each component is invoked. The
component analyses the section and decides whether to pro-
duce a summary of their section or to produce a complete
image of the section. An optional secondary aspect is a core
section that spans all the other sections and contains common
data. This section will always be present in any given diag-
nostic file.

An embodiment also includes a system for producing a
diagnostic file of targeted images of memory in which an
error occurs, together with summarized reports for the areas
which are not part of the image. The image could be per-
formed with a partially or completely filled diagnostic file.

Advantages of embodiments described herein include: 1) a
reduced size of diagnostic output files especially for large
footprint applications; 2) improved reliability of diagnostic
data capture, provided by the self-contained dump compo-
nents with pre-allocated data areas; 3) faster production of
diagnostic output, allowing improved application availabil-
ity; and 4) diagnostics tailored to the nature and location of
the failure, and to the requirements of the separate compo-
nents/sections.

Two examples of schemes that can be used to partition the
address space are: dividing the address space into fixed
memory sections (for example 100 megabyte); and dividing
the address space by functional area.

An embodiment also includes: determining other sections
associated with the error in the particular section; creating
further full or summarized error reports of the other sections
depending on information included by the error signal and the
relationship between the sections; and including in the diag-
nostic file the further full or summarized error reports.

One or more sections can have an error engine associated
with the respective section to determine whether a full or
summarized error report is created. Furthermore, the system
can further include a generic error engine associated with one
or sections that are not associated with a dedicated error
engine, the generic error engine for determining whether a
full or summarized error report is created.

10

15

20

25

30

35

40

45

50

55

60

65

8

In an embodiment, each section in the system is a subset of
system memory.

In an embodiment, each section in the system is a system
component.

In an embodiment, the error signal contains information
relating to the time that the error occurred, the type of error
that occurred and the section associated with the error occur-
rence. Optionally a textual message is passed in the error
signal.

An embodiment also includes creating the sections by
dividing the memory address space of the system into self-
contained functional sections by separating one or more
defined execution components.

An embodiment includes a system for creating a diagnostic
file for a recording a failure within a plurality of systems
sections. The system includes: an error buffer for receiving an
error notification indicating that an error has occurred in a
particular section of the plurality of systems sections; and an
error engine for creating a diagnostic file for a full image or
summarized error report of the particular section depending
on information included by the error notification and for
saving the diagnostic file including the a full image or sum-
marized error report.

In an embodiment, the error engine is also for determining
other sections associated with the error in the particular sec-
tion and creating further full or summarized error reports of
the other sections depending on information included by the
error signal; and including in the diagnostic file the further
full image or summarized error reports.

In an embodiment, the error engine is a master error engine
for determining whether a full image or summarized error
report is created and the system further comprises one or more
slave error engines, each specifically associated with one or
more sections for determining whether a full or summarized
error report is created for the respective one or more sections.

In an embodiment, the master error engine is a triage com-
ponent and the one or more slave engines are self-contained
error engines. The above feature is a master/slave embodi-
ment but other embodiments could be peer-peer, with one
component detecting the problem, acting as the triage com-
ponent in this instance, and notifying the other components.

It will be clear to one of ordinary skill in the art that all or
part of the embodiments described herein may suitably and
usefully be embodied in additional logic apparatus or addi-
tional logic apparatuses, comprising logic elements arranged
to perform the steps of the method and that such logic ele-
ments may comprise additional hardware components, firm-
ware components or a combination thereof.

It will be equally clear to one of'skill in the art that some or
all of the functional components of the embodiments may
suitably be embodied in alternative logic apparatus or appa-
ratuses comprising logic elements to perform equivalent
functionality using equivalent method steps, and that such
logic elements may comprise components such as logic gates
in, for example a programmable logic array or application-
specific integrated circuit. Such logic elements may further be
embodied in enabling elements for temporarily or perma-
nently establishing logic structures in such an array or circuit
using, for example, a virtual hardware descriptor language,
which may be stored and transmitted using fixed or transmit-
table carrier media.

It will be appreciated that the method and arrangement
described above may also suitably be carried out fully or
partially in software running on one or more processors (not
shown in the figures), and that the software may be provided
in the form of one or more computer program elements car-
ried on any suitable data-carrier (also not shown in the fig-

US 9,141,453 B2

9

ures) such as a magnetic or optical disk or the like. Channels
for the transmission of data may likewise comprise storage
media of all descriptions as well as signal-carrying media,
such as wired or wireless signal-carrying media.

Embodiments of the present invention may further suitably
be embodied as a computer program product for use with a
computer system. Such an implementation may comprise a
series of computer-readable instructions either fixed on a
tangible medium, such as a computer readable medium, for
example, diskette, CD-ROM, ROM, or hard disk, or transmit-
table to a computer system, using a modem or other interface
device, over either a tangible medium, including but not lim-
ited to optical or analogue communications lines, or intangi-
bly using wireless techniques, including but not limited to
microwave, infra-red or other transmission techniques. The
series of computer readable instructions embodies all or part
of the functionality previously described herein.

Those skilled in the art will appreciate that such computer
readable instructions can be written in a number of program-
ming languages for use with many computer architectures or
operating systems. Further, such instructions may be stored
using any memory technology, present or future, including
but not limited to, semiconductor, magnetic, or optical, or
transmitted using any communications technology, present or
future, including but not limited to optical, infra-red, or
microwave. It is contemplated that such a computer program
product may be distributed as a removable medium with
accompanying printed or electronic documentation, for
example, shrink-wrapped software, pre-loaded with a com-
puter system, for example, on a system ROM or fixed disk, or
distributed from a server or electronic bulletin board over a
network, for example, the Internet or World Wide Web.

Embodiments may be realized in the form of a computer
implemented method of deploying a service comprising steps
of deploying computer program code operable to, when
deployed into a computer infrastructure and executed
thereon, cause the computer system to perform all the steps of
the method.

Embodiments may also be realized in the form of a data
carrier having functional data thereon, said functional data
comprising functional computer data structures to, when
loaded into a computer system and operated upon thereby,
enable said computer system to perform all the steps of the
method.

In a further alternative, embodiments are realized in the
form of a data carrier having functional data thereon, said
functional data comprising functional computer data struc-
tures to, when loaded into a computer system and operated
upon thereby, enable said computer system to perform all the
steps of the method.

It will be clear to one skilled in the art that many improve-
ments and modifications can be made to the foregoing exem-
plary embodiments without departing from the scope of the
present invention.

The invention claimed is:

1. A method for creating diagnostic files, the method com-
prising:

receiving an error notification indicating that an error has

occurred in a particular system section of a system hav-
ing a plurality of system sections, the error notification
including information about the error;

selecting one of:

creating a full image of the particular system section;
and

creating a summarized error report of the particular sys-
tem section without creating the full image of the
particular system section,

10

15

20

25

30

35

40

45

50

65

10

the selecting based on the information in the error noti-
fication;
creating a diagnostic file comprising one of the full image
of the particular system section and the summarized
error report of the particular system section, wherein
contents of the diagnostic file are based on the selecting;
and
saving the diagnostic file.
2. The method of claim 1, further comprising:
determining another system section of the system that is
associated with the error in the particular system section;

creating one of a full image of the other system section and
a summarized error report of the other system section
based on the information included in the error notifica-
tion and a relationship between the particular system
section and the other system section; and

including, in the diagnostic file, one of the full image and

the summarized error report of the other system section.

3. The method of claim 2, wherein one or more of the
plurality of system sections have a dedicated error engine
associated with the respective system section to determine
whether to create a full image or a summarized error report for
the respective system section.

4. The method of claim 3, wherein the system includes a
generic error engine associated with one or more of the plu-
rality of system sections that are not associated with a dedi-
cated error engine, said generic error engine for determining
whether to create a full image or a summarized error report.

5. The method of claim 4, wherein the generic error engine
is a master error engine for controlling the one or more dedi-
cated error engines, wherein the dedicated error engines are
slave error engines.

6. The method of claim 4, wherein the generic error engine
and the one or more dedicated error engines have a peer-peer
relationship, with any of the error engines detecting the error,
acting as master error engine, and notifying other error
engines.

7. The method of claim 1, wherein each of the plurality of
system sections is a subset of system memory.

8. The method of claim 1, wherein each of the plurality of
system sections is a unique system component.

9. The method of claim 1, wherein the information about
the error includes information relating to the time the error
occurred, the type of error that occurred, and the system
section associated with the error occurrence.

10. The method of claim 1, further comprising dividing a
memory address of the system into the plurality of system
sections, each of the system sections a self-contained func-
tional system section that includes one or more defined execu-
tion components.

11. A system for creating diagnostic files, the system com-
prising:

a plurality of system sections;

an error buffer configured to receive an error notification

indicating that an error has occurred in a particular sys-
tem section of the plurality of system sections, the error
notification including information about the error; and
an error engine configured to:
select between one of:
create a full image of the particular system section;
and
create a summarized error report of the particular
system section without creating the full image of
the particular system section,
the selecting based on the information in the error
notification;

US 9,141,453 B2

11

create a diagnostic file comprising one of the full image
of' the particular system section and the a summarized
error report of the particular system section, wherein
contents of the diagnostic file are based on the select-
ing; and

save the diagnostic file.

12. The system of claim 11, wherein the error engine is
further configured to:

determine another system section of the system that is

associated with the error in the particular system section;

create one of a full image of the other system section and a

summarized error report of the other system section
based on the information included in the error notifica-
tion and a relationship between the particular system
section and the other system section; and

include in the diagnostic file, one of the full image and the

summarized error report of the other system section.

13. The system of claim 12, wherein the error engine
includes one or more dedicated error engines associated with
the respective system section, the one or more dedicated error
engines configured to determine whether to create a full
image or a summarized error report for the respective system
section.

14. The system of claim 13, wherein the error engine fur-
ther includes a generic error engine associated with one or
more of'the plurality of system sections that are not associated
with a dedicated error engine, the generic error engine con-
figured to determine whether to create a full image or a
summarized error repott.

15. The system of claim 14, wherein the generic error
engine is configured as a master error engine to control the
one or more dedicated error engines, and the dedicated error
engines are configured as slave error engines.

16. The system of claim 14, wherein the generic error
engine and the one or more dedicated error engines have a

10

20

25

30

12

peer-peer relationship, with any of the error engines config-
ured to detect the error, to act as master error engine, and to
notify other error engines.
17. The system of claim 11, wherein each of the plurality of
system sections is a subset of system memory.
18. The system of claim 11, wherein each of the plurality of
system sections is a unique system component.
19. The system of claim 11, wherein the information about
the error includes information relating to the time the error
occurred, the type of error that occurred, and the system
section associated with the error occurrence.
20. A computer program product for creating diagnostic
files, the computer program product comprising:
a non-transitory computer readable storage medium hav-
ing program code embodied therewith, the program
code executable by a processor to:
receive an error notification indicating that an error has
occurred in a particular system section of a system hav-
ing a plurality of system sections, the error notification
including information about the error;
select one of:
create a full image of the particular system section; and
create a summarized error report of the particular system
section without creating the full image of the particu-
lar system section,

the selecting based on the information in the error noti-
fication;

create a diagnostic file comprising one of the full image of
the particular system section and the summarized error
report of the particular system section, wherein contents
of the diagnostic file are based on results of the deter-
mining; and

save the diagnostic file.

#* #* #* #* #*

